Title of article
A Credit Assignment Approach to Fusing Classifiers of Multiseason Hyperspectral Imagery
Author/Authors
Bachmann، Charles M. نويسنده , , Bettenhausen، Michael H. نويسنده , , Fusina، Robert A. نويسنده , , Donato، Timothy F. نويسنده , , Russ، Andrew L. نويسنده , , Burke، Joseph W. نويسنده , , Lamela، Gia M. نويسنده , , Rhea، W. Joseph نويسنده , , Truitt، Barry R. نويسنده , , Porter، John H. نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-2487
From page
2488
To page
0
Abstract
A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancyʹs Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches. Barrier Islands
Keywords
decision-based classifier fusion , hyperspectral remote sensing , land-cover classification , maximum estimated reliability measure (MAXERM) , multiple classifier systems , multiple classification system , smooth estimated reliability measure (SERM) , Virginia Coast Reserve , multiseason classification
Journal title
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Serial Year
2003
Journal title
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Record number
100314
Link To Document