• Title of article

    A Credit Assignment Approach to Fusing Classifiers of Multiseason Hyperspectral Imagery

  • Author/Authors

    Bachmann، Charles M. نويسنده , , Bettenhausen، Michael H. نويسنده , , Fusina، Robert A. نويسنده , , Donato، Timothy F. نويسنده , , Russ، Andrew L. نويسنده , , Burke، Joseph W. نويسنده , , Lamela، Gia M. نويسنده , , Rhea، W. Joseph نويسنده , , Truitt، Barry R. نويسنده , , Porter، John H. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -2487
  • From page
    2488
  • To page
    0
  • Abstract
    A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancyʹs Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches. Barrier Islands
  • Keywords
    decision-based classifier fusion , hyperspectral remote sensing , land-cover classification , maximum estimated reliability measure (MAXERM) , multiple classifier systems , multiple classification system , smooth estimated reliability measure (SERM) , Virginia Coast Reserve , multiseason classification
  • Journal title
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
  • Serial Year
    2003
  • Journal title
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
  • Record number

    100314