Title of article
Cramer-Rao bounds for parametric shape estimation in inverse problems
Author/Authors
P.، Moulin, نويسنده , , Ye، Jong Chul نويسنده , , Y.، Bresler, نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
14
From page
71
To page
84
Abstract
We address the problem of computing fundamental performance bounds for estimation of object boundaries from noisy measurements in inverse problems, when the boundaries are parameterized by a finite number of unknown variables. Our model applies to multiple unknown objects, each with its own unknown gray level, or color, and boundary parameterization, on an arbitrary known background. While such fundamental bounds on the performance of shape estimation algorithms can in principle be derived from the Cramer-Rao lower bounds, very few results have been reported due to the difficulty of computing the derivatives of a functional with respect to shape deformation. We provide a general formula for computing Cramer-Rao lower bounds in inverse problems where the observations are related to the object by a general linear transform, followed by a possibly nonlinear and noisy measurement system. As an illustration, we derive explicit formulas for computed tomography, Fourier imaging, and deconvolution problems. The bounds reveal that highly accurate parametric reconstructions are possible in these examples, using severely limited and noisy data.
Keywords
heat transfer , natural convection , Analytical and numerical techniques
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year
2003
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number
100503
Link To Document