Title of article
A comparison of standard spell checking algorithms and a novel binary neural approach
Author/Authors
V.J.، Hodge, نويسنده , , J.، Austin, نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-1072
From page
1073
To page
0
Abstract
In this paper, we propose a simple, flexible, and efficient hybrid spell checking methodology based upon phonetic matching, supervised learning, and associative matching in the AURA neural system. We integrate Hamming Distance and n-gram algorithms that have high recall for typing errors and a phonetic spell-checking algorithm in a single novel architecture. Our approach is suitable for any spell checking application though aimed toward isolated word error correction, particularly spell checking user queries in a search engine. We use a novel scoring scheme to integrate the retrieved words from each spelling approach and calculate an overall score for each matched word. From the overall scores, we can rank the possible matches. We evaluate our approach against several benchmark spellchecking algorithms for recall accuracy. Our proposed hybrid methodology has the highest recall rate of the techniques evaluated. The method has a high recall rate and low-computational cost.
Keywords
Food patterns , waist circumference , Prospective study , Abdominal obesity
Journal title
IEEE Transactions on Knowledge and Data Engineering
Serial Year
2003
Journal title
IEEE Transactions on Knowledge and Data Engineering
Record number
100591
Link To Document