• Title of article

    Induced-current electrical impedance tomography: a 2-D theoretical Simulation

  • Author/Authors

    S.، Zlochiver, نويسنده , , M.، Rosenfeld, نويسنده , , S.، Abboud, نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -154
  • From page
    155
  • To page
    0
  • Abstract
    A reconstruction algorithm, based on the modified Newton-Raphson algorithm, was developed for induced-current electrical impedance tomography and studied in theoretical two-dimensional geometry representing a human thorax. The finite-volume method was applied for the discretization of the physical domain, resulting in a symbolic representation of the Jacobian matrix, which is accurate and fast to construct. Several system configurations, differing in the number of excitation coils and electrodes, were simulated, and the performance in thoracic imaging was studied. It was found that a six-coil system shows a significant 40% improvement of conductivity values reconstruction over the three-coil system (an error of 2.06 (omega)/sup -1/ compared with 3.44 (omega)/sup -1/). A number of 32 electrodes was found to be sufficient, being the smallest number of electrodes to still provide a reasonable performance (only 4.2% degradation in average conductivity error compared with the maximum possible 106electrode system).
  • Keywords
    Power-aware
  • Journal title
    IEEE Transactions on Medical Imaging
  • Serial Year
    2003
  • Journal title
    IEEE Transactions on Medical Imaging
  • Record number

    100745