• Title of article

    Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow

  • Author/Authors

    Boom، Remko M. نويسنده , , Kromkamp، Janneke نويسنده , , Ende، Dirk van den نويسنده , , Kandhai، Drona نويسنده , , Sman، Ruud van der نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2006
  • Pages
    -857
  • From page
    858
  • To page
    0
  • Abstract
    In this study, the Lattice Boltzmann (LB) method is applied for computer simulation of suspension flow in Couette systems. Typical aspects of Couette flow such as wall effects and non-zero Reynolds numbers can be studied well with the LB method because of its time-dependent character. Couette flow of single, two and multi-particle systems was studied, where two-dimensional (2D) systems were compared with three-dimensional (3D) systems. Computations on multi-particle 3D suspensions, for instance to assess the viscosity or shear-induced diffusivity, were found to be very intensive. This was only partly a consequence of the 3D system size. The critical particle grid size, necessary for accurate results, was found to be relatively large, increasing the system to impractical sizes. It is however demonstrated that it is possible to carry out computer simulations on 2D suspensions and use relatively simple, linear scaling relations to translate these results to 3D suspensions, in this way avoiding intensive computations. By doing so, the LB method is shown to be well-suited for study of suspension flow in Couette systems, particularly for aspects as particle layering near solid walls, hydrodynamic particle interactions and viscous stresses at non-zero Reynolds numbers, which cannot be easily solved with alternative methods. It also opens the way to employ the LB method for other unexplored aspects, such as particle polydispersity and high Reynolds number flow, with large relevance to practical processing of suspensions.
  • Keywords
    Suspension , Lattice Boltzmann method , Couette flow , Sphe , Cylinder , computer simulation
  • Journal title
    CHEMICAL ENGINEERING SCIENCE
  • Serial Year
    2006
  • Journal title
    CHEMICAL ENGINEERING SCIENCE
  • Record number

    101830