• Title of article

    Prediction of gas chromatographic retention indices of alkylbenzenes

  • Author/Authors

    J.M. Sutter، نويسنده , , T.A. Peterson، نويسنده , , P.C. Jurs، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    10
  • From page
    113
  • To page
    122
  • Abstract
    The retention indices (RIs) of a set of alkylbenzenes on a polar gas chromatographic column are predicted directly from their molecular structures. Numerical descriptors are calculated based on the structure of a group of 150 alkylbenzenes. The descriptors are of three types: topological, geometric, and electronic. Statistical methods are employed to find an informative subset of these descriptors that can accurately predict the gas chromatographic RIs. The Automated Data Analysis and Pattern Recognition Toolkit (ADAPT) software system is used to construct a large pool of structurally derived numerical descriptors which are used to build quantitative structure-retention relationships (QSRRs). Multiple linear regression analysis and computational neural networks are used to map the descriptors to the RIs.
  • Keywords
    QSRR , Chemometrics , Alkylbenzenes , Gas chromatography , Genetic algorithms , Computational neural networks
  • Journal title
    Analytica Chimica Acta
  • Serial Year
    1997
  • Journal title
    Analytica Chimica Acta
  • Record number

    1024467