• Title of article

    Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations

  • Author/Authors

    Radulescu، M. I. نويسنده , , Higgins، A. J. نويسنده , , Ng، H. D. نويسنده , , Kiyanda، C. B. نويسنده , , Lee، J. H. S. نويسنده , , Bates، K. R. نويسنده , , Nikiforakis، N. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    -158
  • From page
    159
  • To page
    0
  • Abstract
    To understand the nonlinear dynamical behaviour of a one-dimensional pulsating detonation, results obtained from numerical simulations of the Euler equations with simple one-step Arrhenius kinetics are analysed using basic nonlinear dynamics and chaos theory. To illustrate the transition pattern from a simple harmonic limit-cycle to a more complex irregular oscillation, a bifurcation diagram is constructed from the computational results. Evidence suggests that the route to higher instability modes may follow closely the Feigenbaum scenario of a period-doubling cascade observed in many generic nonlinear systems. Analysis of the one-dimensional pulsating detonation shows that the Feigenbaum number, defined as the ratio of intervals between successive bifurcations, appears to be in reasonable agreement with the universal value of d = 4.669. Using the concept of the largest Lyapunov exponent, the existence of chaos in a onedimensional unsteady detonation is demonstrated.
  • Keywords
    Hardy space , shift operator , model , subspace , Hilbert transform , admissible majorant , inner function
  • Journal title
    COMBUSTION THEORY AND MODELLING
  • Serial Year
    2005
  • Journal title
    COMBUSTION THEORY AND MODELLING
  • Record number

    108017