• Title of article

    Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: A combinatorial investigation Original Research Article

  • Author/Authors

    John E. Daniels، نويسنده , , Wook Jo، نويسنده , , Jurgen Rodel، نويسنده , , Veijo Honkimaki، نويسنده , , Jacob L. Jones، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    9
  • From page
    2103
  • To page
    2111
  • Abstract
    The electric-field-induced strain behavior in (1 − x − y)(Bi0.5Na0.5)TiO3–xBaTiO3–y(K0.5Na0.5)NbO3 electroceramics has been studied using a combinatorial technique. A stoichiometrically graded sample was produced to contain compositions across the ternary phase diagram between the two end-member components of 0.93(Bi0.5Na0.5)TiO3–0.07BaTiO3 and 0.86(Bi0.5Na0.5)TiO3–0.14(K0.5Na0.5)NbO3. Both composition and structural information were measured simultaneously during the application of electric fields using secondary X-ray fluorescence and high-energy X-ray microdiffraction, respectively. An initial electric-field-induced distortion from the pseudo-cubic structure is seen across all compositions, while those with a greater concentration of BaTiO3 also undergo an electric-field-induced phase transformation. The microstructural contribution to the macroscopic strain within the 0.93(Bi0.5Na0.5)TiO3–0.07BaTiO3 end member is quantified at a field strength of 5.5 kV mm−1; 0.08% and 0.11% of the measured macroscopic strain of 0.4% is contributed by the induced ferroelastic domain texture and the volumetric strain associated with the electric-field-induced phase transformation, respectively.
  • Keywords
    Electroceramics , Piezoelectricity , Phase transformation , X-ray fluorescence , X-ray diffraction (XRD)
  • Journal title
    ACTA Materialia
  • Serial Year
    2010
  • Journal title
    ACTA Materialia
  • Record number

    1144808