Title of article
Enhanced densification of Ti–6Al–4V powders by transformation-mismatch plasticity Original Research Article
Author/Authors
Bing Ye، نويسنده , , Marc R. Matsen، نويسنده , , David C. Dunand، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2010
Pages
9
From page
3851
To page
3859
Abstract
The densification kinetics of Ti–6Al–4V powders with spherical or angular shapes are compared in uniaxial die pressing experiments between isothermal conditions (at 1020 °C, in the β-field, where deformation occurs by creep) and thermal cycling (between 860 and 1020 °C, within the range of the α–β phase transformation of the alloy, where transformation-mismatch plasticity is activated). Densification kinetics are only moderately affected by powder shape, but are markedly faster under thermal cycling than under isothermal conditions, as expected from the higher deformation rate achieved under transformation-mismatch plasticity conditions as compared to creep conditions. The densification curves for both creep and mismatch plasticity deformation mechanisms are successfully modeled for various applied stresses and for partial cycling, when transformation is incomplete. Tensile properties of specimens fully densified under thermal cycling conditions are similar to literature values from Ti–6Al–4V densified by isothermal hot isostatic pressing.
Keywords
Hot pressing , Powder consolidation , Superplasticity , Titanium , Phase transformations
Journal title
ACTA Materialia
Serial Year
2010
Journal title
ACTA Materialia
Record number
1144979
Link To Document