Title of article
Observables on quantum structures
Author/Authors
Anatolij Dvure?enskij، نويسنده , , M?ria Kukov?، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
8
From page
215
To page
222
Abstract
An observable on a quantum structure is any σ-homomorphism of quantum structures from the Borel σ-algebra into the quantum structure. We show that our partial information on an observable known only for all intervals of the form (−∞, t) is sufficient to derive the whole information about the observable defined on quantum structures like σ-MV-algebras, σ-lattice effect algebras, Boolean σ-algebras, monotone σ-complete effect algebras with the Riesz Decomposition Property, the effect algebra of effect operators of a Hilbert space, and systems of functions – effect-tribes.
Keywords
Monotone ?-completeness , Loomis–Sikorski Theorem , Effect-tribe , Riesz Decomposition Property , Observable , Effect algebra
Journal title
Information Sciences
Serial Year
2014
Journal title
Information Sciences
Record number
1216048
Link To Document