• Title of article

    Selecting enhanced space debris shields for manned spacecraft

  • Author/Authors

    R. Destefanis، نويسنده , , F. Schafer، نويسنده , , M. Lambert، نويسنده , , M. Faraud، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    12
  • From page
    219
  • To page
    230
  • Abstract
    A research program was funded by the European space agency (ESA) to improve and optimize the shields used to protect the manned elements of the international space station (ISS) against impacts of micro-meteoroids and orbital debris. After a review of existing shielding systems and after a series of light gas gun (LGG) experiments to screen interesting new materials and configurations, the research focused on shields with a metallic outer bumper, an intermediate stuffing and an inner metallic wall (representing the pressure shell of a manned spacecraft). Additional LGG experiments were performed on several configurations, with bumpers containing aluminum foam or made from titanium and aluminum super-alloys and with several combinations of stuffing materials. The comparison of the test results showed that ceramic cloth (Nextel) plus aramid fabric (both 2D and 2.5D Kevlar weaving) used as intermediate bumper gave a good protection compared to the overall area density requested. Configurations with by-layered aluminum foam bumpers (sandwich panels with asymmetric Al face sheets and a core made from Al foam) and Kevlar stuffing showed excellent resistance to normal impacts at about 6.5 km/s. However, the influence of material properties varying from batch to batch and threshold phenomena made ranking among the tested options rather difficult. The test campaign showed that it was rather difficult to improve over the already good ballistic performances of the debris shields developed by Alenia Spazio for the ISS manned elements. The by-layered Al-foam bumper and Kevlar stuffing configuration was selected for additional tests, including low velocity and oblique impacts, to develop ballistic limit curves.
  • Keywords
    spacecraft shielding , Aluminum Foam , Manned spacecraft , hypervelocity impact , orbital debris
  • Journal title
    International Journal of Impact Engineering
  • Serial Year
    2006
  • Journal title
    International Journal of Impact Engineering
  • Record number

    1250969