• Title of article

    Experimental and computational investigation of local scour around bridge piers

  • Author/Authors

    Ali Khosronejad، نويسنده , , Seokkoo Kang، نويسنده , , Fotis SotiropoulosCorresponding author contact information، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    13
  • From page
    73
  • To page
    85
  • Abstract
    Experiments and numerical simulations are carried out to study clear-water scour around three bridge piers with cylindrical, square, and diamond cross-sectional shape, respectively. To handle movable-bed channels with embedded hydraulic structures, the fluid–structure interaction curvilinear immersed boundary (FSI-CURVIB) method is employed. The hydrodynamic model solves the unsteady Reynolds-averaged Navier–Stokes (URANS) equations closed with the k-ω turbulence model using a second-order accurate fractional step method. Bed erosion is simulated by solving the sediment continuity equation in the bed-load layer using a second-order accurate unstructured, finite-volume formulation with a sand-slide, bed-slope-limiting algorithm. Grid sensitivity studies are carried out to investigate the effect of grid resolution on the predictive capability of the model. Comparisons of the simulations with the experimental data show that for all three cases the agreement is reasonable. A major finding of this work, however, is that the predictive capability of the URANS morphodynamic model improves dramatically for the diamond shape pier for which sediment transport is driven primarily by the shear layers shed from the pier sharp edges. For piers with blunt leading edge, on the other hand, as the circular and square shapes, the URANS model cannot resolve the energetic horseshoe vortex system at the pier/bed junction and thus significantly underpredicts both the scour depth at the nose of the pier and the rate of scour growth. It is also shown that ad hoc empirical corrections that modify the calculated critical bed shear stress to enhance scour rate in the pier leading edge need to be applied with caution as their predictive capabilities are not universal but rather depend on the pier shape and the region of the flow.
  • Keywords
    Bridge pier , Turbulent flow , immersed boundary method , Local scour , Numerical Modeling , sediment transport
  • Journal title
    Advances in Water Resources
  • Serial Year
    2012
  • Journal title
    Advances in Water Resources
  • Record number

    1272505