• Title of article

    A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks

  • Author/Authors

    Navarro-Esbrي، نويسنده , , J. and Berbegall، نويسنده , , V. and Verdu، نويسنده , , G. and Cabello، نويسنده , , R. and Llopis، نويسنده , , R.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    8
  • From page
    1452
  • To page
    1459
  • Abstract
    In this work a model of a vapour compression refrigeration system with a variable-speed compressor, based on a black-box modelling technique, is presented. The kernel of the model consists of a full customized radial basis function network, which has been developed to accurately predict the performance of the system with low cost data requirement in terms of input variables and training data. The work also presents a steady state validation of the model inside and outside the training data set, finding, in both cases, a good agreement between experimental values and those predicted by the model. These results constitute a first step to go through future research on fault detection and energy optimisation in variable-speed refrigeration systems.
  • Keywords
    detection , Anomaly , Réfrigération , Conditionnement d’air , Vitesse variable , Compresseur , Modélisation , Refrigeration , Réseau neuronal , air conditioning , Consommation d’énergie , Compression system , Détection , Compressor , Variable Speed , Anomalie , Modelling , Neuronal network , Energy consumption , Système à compression
  • Journal title
    International Journal of Refrigeration
  • Serial Year
    2007
  • Journal title
    International Journal of Refrigeration
  • Record number

    1341684