Title of article
A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks
Author/Authors
Navarro-Esbrي، نويسنده , , J. and Berbegall، نويسنده , , V. and Verdu، نويسنده , , G. and Cabello، نويسنده , , R. and Llopis، نويسنده , , R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
8
From page
1452
To page
1459
Abstract
In this work a model of a vapour compression refrigeration system with a variable-speed compressor, based on a black-box modelling technique, is presented. The kernel of the model consists of a full customized radial basis function network, which has been developed to accurately predict the performance of the system with low cost data requirement in terms of input variables and training data. The work also presents a steady state validation of the model inside and outside the training data set, finding, in both cases, a good agreement between experimental values and those predicted by the model. These results constitute a first step to go through future research on fault detection and energy optimisation in variable-speed refrigeration systems.
Keywords
detection , Anomaly , Réfrigération , Conditionnement d’air , Vitesse variable , Compresseur , Modélisation , Refrigeration , Réseau neuronal , air conditioning , Consommation d’énergie , Compression system , Détection , Compressor , Variable Speed , Anomalie , Modelling , Neuronal network , Energy consumption , Système à compression
Journal title
International Journal of Refrigeration
Serial Year
2007
Journal title
International Journal of Refrigeration
Record number
1341684
Link To Document