• Title of article

    Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability

  • Author/Authors

    Yu Seung Kim، نويسنده , , Michael A. Hickner، نويسنده , , Limin Dong، نويسنده , , Bryan S. Pivovar، نويسنده , , James E. McGrath، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    10
  • From page
    317
  • To page
    326
  • Abstract
    Methanol permeability of directly copolymerized 4,4′-biphenol based disulfonated poly(arylene ether sulfone) copolymers (BPSH) was investigated with reference to utility as a proton exchange membrane (PEM) for direct methanol fuel cells (DMFC). Water uptake and dynamic mechanical analysis were coupled with previous observations that the PEM can have two functional morphological regimes, which depend on the degree of disulfonation (copolymer composition), acidification method, and hydrothermal treatment. The two regimes are observed by AFM to represent: (1) a “closed” structure where the hydrophilic copolymer chain segments essentially aggregate as isolated domains; or (2) an “open” structure where the domain connectivity of the hydrophilic phase of the copolymers is achieved. It was demonstrated that methanol permeability (25 °C) of the copolymers abruptly increased at copolymer compositions and processing conditions that influenced the membrane morphology to change from a closed to a much more open structure. The activation energy in the closed structure regime, ∼20 kJ/mol, was about 35% higher than that in the open regime, ∼15 kJ/mol. The BPSH copolymers had higher selectivity (i.e. proton conductivity/permeability) than Nafion because of their remarkably lower methanol permeability, suggesting these materials hold promise for improved DMFC performance. Selectivity increased with the degree of disulfonation in closed structures, but decreased in the open structure regime. It is suggested that the optimum concentration of proton conducting groups for DMFC should be observed at or near the percolation threshold.
  • Keywords
    Ion-exchange membrane , Disulfonated poly(arylene ether sulfone) copolymers , Liquid permeability and separation , Acidification treatment , Direct methanol fuel cells
  • Journal title
    Journal of Membrane Science
  • Serial Year
    2004
  • Journal title
    Journal of Membrane Science
  • Record number

    1351559