Title of article
Bounds for the effective properties of heterogeneous plates
Author/Authors
Nguyen، نويسنده , , Trung-Kien and Sab، نويسنده , , Karam and Bonnet، نويسنده , , Guy، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2009
Pages
13
From page
1051
To page
1063
Abstract
This paper presents new bounds for heterogeneous plates which are similar to the well-known Hashin–Shtrikman bounds, but take into account plate boundary conditions. The Hashin–Shtrikman variational principle is used with a self-adjoint Green-operator with traction-free boundary conditions proposed by the authors. This variational formulation enables to derive lower and upper bounds for the effective in-plane and out-of-plane elastic properties of the plate. Two applications of the general theory are considered: first, in-plane invariant polarization fields are used to recover the “first-order” bounds proposed by Kolpakov [Kolpakov, A.G., 1999. Variational principles for stiffnesses of a non-homogeneous plate. J. Meth. Phys. Solids 47, 2075–2092] for general heterogeneous plates; next, “second-order bounds” for n-phase plates whose constituents are statistically homogeneous in the in-plane directions are obtained. The results related to a two-phase material made of elastic isotropic materials are shown. The “second-order” bounds for the plate elastic properties are compared with the plate properties of homogeneous plates made of materials having an elasticity tensor computed from “second-order” Hashin–Shtrikman bounds in an infinite domain.
Keywords
Hashin–Shtrikman variational principle , Plate , Fourier transforms , Effective properties , Second-order bounds , ?-operator
Journal title
European Journal of Mechanics: A Solids
Serial Year
2009
Journal title
European Journal of Mechanics: A Solids
Record number
1389288
Link To Document