Title of article
Sensitivity of surface plasmon resonance sensors based on metallic columnar thin films in the spectral and angular interrogations
Author/Authors
Shalabney، نويسنده , , Atef and Khare، نويسنده , , C. and Rauschenbach، نويسنده , , B. and Abdulhalim، نويسنده , , I.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
12
From page
201
To page
212
Abstract
Surface Plasmon Resonance (SPR) from metallic Columnar Thin Films (CTFs) of porosity as high as 0.5 was experimentally and theoretically investigated. The CTF layers were prepared by the Glancing Angle Deposition (GLAD) method. The SPR features were investigated in both the angular and the spectral modes. In the angular interrogation, increasing the porosity causes broadening to the dip width, shift to larger resonance angles, and increase of the sensitivity to analyte refractive index (RI) changes by about threefold compared with closed metal films. In the spectral interrogation, on the other hand, the resonance wavelengths are red-shifted for porous films; hence their spectral sensitivities are higher than those of closed films under the same experimental conditions. Nevertheless, the sensitivity behavior versus the resonance wavelength is similar to that of SPR sensors based on dense film layers. The shapes of the nanostructures constituting the CTF are described as ellipsoidal inclusions in which the effective permittivity dyadic of the composite material is calculated using the Bruggeman formalism with exact depolarization dyadics. The correlation between the sensitivity enhancement and the electromagnetic field intensity at the interface between the metallic film and the analyte was examined. Electromagnetic fields analyses were performed using the general 4 × 4 propagation matrices of general homogenous biaxial layers.
Keywords
surface plasmon resonance , Sculptured Thin Films , sensitivity enhancement , Optical biosensors
Journal title
Sensors and Actuators B: Chemical
Serial Year
2011
Journal title
Sensors and Actuators B: Chemical
Record number
1440064
Link To Document