• Title of article

    Dual time–frequency domain system identification

  • Author/Authors

    Agüero، نويسنده , , Juan C. and Tang، نويسنده , , Wei and Yuz، نويسنده , , Juan I. and Delgado، نويسنده , , Ramَn and Goodwin، نويسنده , , Graham C.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    11
  • From page
    3031
  • To page
    3041
  • Abstract
    In this paper we obtain the maximum likelihood estimate of the parameters of discrete-time linear models by using a dual time–frequency domain approach. We propose a formulation that considers a (reduced-rank) linear transformation of the available data. Such a transformation may correspond to different options: selection of time-domain data, transformation to the frequency domain, or selection of frequency-domain data obtained from time-domain samples. We use the proposed approach to identify multivariate systems represented in state–space form by using the Expectation–Maximisation algorithm. We illustrate the benefits of the approach via numerical examples.
  • Keywords
    Maximum likelihood , Robust system identification
  • Journal title
    Automatica
  • Serial Year
    2012
  • Journal title
    Automatica
  • Record number

    1448940