• Title of article

    Long paths and cycles in faulty hypercubes: existence, optimality, complexity

  • Author/Authors

    Dvo??k، نويسنده , , Tom?? and Fink، نويسنده , , Ji?? and Gregor، نويسنده , , Petr and Koubek، نويسنده , , V?clav، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    5
  • From page
    35
  • To page
    39
  • Abstract
    A fault-free cycle in the n-dimensional hypercube Q n with f faulty vertices is long if it has length at least 2 n − 2 f . If all faulty vertices are from the same bipartite class of Q n , such length is the best possible. We prove a conjecture of Castañeda and Gotchev [N. Castañeda and I. S. Gotchev. Embedded paths and cycles in faulty hypercubes. J. Comb. Optim., 2009. doi:10.1007/s10878-008-9205-6.] asserting that f n = ( n 2 ) − 2 where f n for every set of at most f n faulty vertices, there exists a long fault-free cycle in Q n . Furthermore, we present several results on similar problems of long paths and long routings in faulty hypercubes and their complexity.
  • Keywords
    Long cycle , Long path , NP-Hard , Faulty vertex , Hypercube
  • Journal title
    Electronic Notes in Discrete Mathematics
  • Serial Year
    2009
  • Journal title
    Electronic Notes in Discrete Mathematics
  • Record number

    1455063