• Title of article

    Inference of the biodiesel cetane number by multivariate techniques

  • Author/Authors

    Nadai، نويسنده , , Diogo V. and Simُes، نويسنده , , Juliana B. and Gatts، نويسنده , , Carlos E.N. and Miranda، نويسنده , , Paulo C.M.L. Miranda، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    6
  • From page
    325
  • To page
    330
  • Abstract
    In this work, we have implemented a method which uses structural information from 1H NMR spectra of fatty esters and biodiesels to infer the corresponding Cetane Number (CN). The method consists of the successive application of Principal Component Analysis (PCA), Fuzzy Clustering and a feed-forward Artificial Neural Network (ANN) to the data set. PCA recognized redundant information, and determined the number of clusters for subsequent Fuzzy Clustering classification. At the final stage ANN used membership values from the Fuzzy Clustering process as inputs to predict the cetane number of different types of biodiesel (complex mixtures) from data of pure substances (esters). Root-mean-square deviations were in the range of 0.2–2.4.
  • Keywords
    neural network , Alkyl fatty esters , Cetane number , Fuzzy clustering
  • Journal title
    Fuel
  • Serial Year
    2013
  • Journal title
    Fuel
  • Record number

    1468934