Title of article
Inference of the biodiesel cetane number by multivariate techniques
Author/Authors
Nadai، نويسنده , , Diogo V. and Simُes، نويسنده , , Juliana B. and Gatts، نويسنده , , Carlos E.N. and Miranda، نويسنده , , Paulo C.M.L. Miranda، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
6
From page
325
To page
330
Abstract
In this work, we have implemented a method which uses structural information from 1H NMR spectra of fatty esters and biodiesels to infer the corresponding Cetane Number (CN). The method consists of the successive application of Principal Component Analysis (PCA), Fuzzy Clustering and a feed-forward Artificial Neural Network (ANN) to the data set. PCA recognized redundant information, and determined the number of clusters for subsequent Fuzzy Clustering classification. At the final stage ANN used membership values from the Fuzzy Clustering process as inputs to predict the cetane number of different types of biodiesel (complex mixtures) from data of pure substances (esters). Root-mean-square deviations were in the range of 0.2–2.4.
Keywords
neural network , Alkyl fatty esters , Cetane number , Fuzzy clustering
Journal title
Fuel
Serial Year
2013
Journal title
Fuel
Record number
1468934
Link To Document