Title of article
Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation
Author/Authors
Densmore، نويسنده , , Jeffery D. and Larsen، نويسنده , , Edward W.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
19
From page
387
To page
405
Abstract
The Variational Variance Reduction (VVR) method is an effective technique for increasing the efficiency of Monte Carlo simulations [Ann. Nucl. Energy 28 (2001) 457; Nucl. Sci. Eng., in press]. This method uses a variational functional, which employs first-order estimates of forward and adjoint fluxes, to yield a second-order estimate of a desired system characteristic – which, in this paper, is the criticality eigenvalue k. If Monte Carlo estimates of the forward and adjoint fluxes are used, each having global “first-order” errors of O(1/N), where N is the number of histories used in the Monte Carlo simulation, then the statistical error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical possibility and demonstrate with numerical examples that implementations of the VVR method for criticality problems can approximate O(1/N) convergence for significantly large values of N.
Keywords
Monte Carlo , criticality , variance reduction , Adjoint simulation , variational methods
Journal title
Journal of Computational Physics
Serial Year
2003
Journal title
Journal of Computational Physics
Record number
1477697
Link To Document