• Title of article

    Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation

  • Author/Authors

    Densmore، نويسنده , , Jeffery D. and Larsen، نويسنده , , Edward W.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    19
  • From page
    387
  • To page
    405
  • Abstract
    The Variational Variance Reduction (VVR) method is an effective technique for increasing the efficiency of Monte Carlo simulations [Ann. Nucl. Energy 28 (2001) 457; Nucl. Sci. Eng., in press]. This method uses a variational functional, which employs first-order estimates of forward and adjoint fluxes, to yield a second-order estimate of a desired system characteristic – which, in this paper, is the criticality eigenvalue k. If Monte Carlo estimates of the forward and adjoint fluxes are used, each having global “first-order” errors of O(1/N), where N is the number of histories used in the Monte Carlo simulation, then the statistical error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical possibility and demonstrate with numerical examples that implementations of the VVR method for criticality problems can approximate O(1/N) convergence for significantly large values of N.
  • Keywords
    Monte Carlo , criticality , variance reduction , Adjoint simulation , variational methods
  • Journal title
    Journal of Computational Physics
  • Serial Year
    2003
  • Journal title
    Journal of Computational Physics
  • Record number

    1477697