Title of article
A stable high-order finite difference scheme for the compressible Navier–Stokes equations: No-slip wall boundary conditions
Author/Authors
Svنrd، نويسنده , , Magnus and Nordstrِm، نويسنده , , Jan، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
20
From page
4805
To page
4824
Abstract
A stable wall boundary procedure is derived for the discretized compressible Navier–Stokes equations. The procedure leads to an energy estimate for the linearized equations. We discretize the equations using high-order accurate finite difference summation-by-parts (SBP) operators. The boundary conditions are imposed weakly with penalty terms. We prove linear stability for the scheme including the wall boundary conditions.
nalty imposition of the boundary conditions is tested for the flow around a circular cylinder at Ma = 0.1 and Re = 100 . We demonstrate the robustness of the SBP-SAT technique by imposing incompatible initial data and show the behavior of the boundary condition implementation. Using the errors at the wall we show that higher convergence rates are obtained for the high-order schemes.
pute the vortex shedding from a circular cylinder and obtain good agreement with previously published (computational and experimental) results for lift, drag and the Strouhal number. We use our results to compare the computational time for a given for a accuracy and show the superior efficiency of the 5th-order scheme.
Journal title
Journal of Computational Physics
Serial Year
2008
Journal title
Journal of Computational Physics
Record number
1480656
Link To Document