• Title of article

    Time domain formulation of self-excited forces on bridge deck for wind tunnel experiment

  • Author/Authors

    Zhang، نويسنده , , Xin and Brownjohn، نويسنده , , James Mark William and Omenzetter، نويسنده , , Piotr، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    14
  • From page
    723
  • To page
    736
  • Abstract
    Time domain formulation of the self-excited wind forces on bridge decks employs indicial functions. In bridge aeroelasticity, these functions are obtained by transforming the flutter derivative model to time domain. Studies have suggested, however, that the relative amplitude effect, i.e. the effect of structural oscillation amplitude relative to the amplitude of response to ambient wind, on flutter derivatives needs to be considered. This effect indicates the difference between the two cases, where the pulse response of an elastically supported body is smooth and where the motion is significantly affected by ambient wind forces. The non-linearity may affect the transformation of flutter derivative model to time domain. An alternative to obtaining the time domain formulation for the self-excited force is to treat the self-excited force as a separate dynamic system, so that the relative amplitude effect can be evaluated in more detail. In this paper, a self-excited force generation system coupled with the rigid bridge deck system is proposed to overcome the difficulties in the measurement and derivation of the time domain representation of self-excited force on bridge decks. This expression can be linked to a flutter derivative model, and a transform relationship between the two models is suggested.
  • Keywords
    Indicial function , Flutter derivatives , Time domain , Self-excited forces
  • Journal title
    Journal of Wind Engineering and Industrial Aerodynamics
  • Serial Year
    2003
  • Journal title
    Journal of Wind Engineering and Industrial Aerodynamics
  • Record number

    1497675