• Title of article

    Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography

  • Author/Authors

    Tao، نويسنده , , Yinying and Carta، نويسنده , , Giorgio، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    10
  • From page
    70
  • To page
    79
  • Abstract
    The binding capacity and adsorption kinetics of a monoclonal antibody (mAb) are measured for experimental cation exchangers obtained by grafting dextran polymers to agarose beads and compared with measurements for two commercial agarose-based cation exchangers with and without dextran grafts. Introduction of charged dextran polymers results in enhanced adsorption kinetics despite a dramatic reduction of the accessible pore size as determined by inverse size-exclusion chromatography. Incorporation of neutral dextran polymers in a charged agarose bead results instead in substantially lower binding capacities. The effective pore diffusivities obtained from batch uptake curves increase substantially as the protein concentration is reduced for the resins containing charged dextran grafts, but are much less dependent on protein concentration for the resins with no dextran or uncharged dextran grafts. The batch uptake results are corroborated by microscopic observations of transient adsorption in individual particles. In all cases studied, the adsorption kinetics is characterized by a sharp adsorption front consistent with a shell-progressive, diffusion limited mechanism. Greatly enhanced transport rates are obtained with an experimental resin containing charged dextran grafts with effective pore diffusivities that are 1–9 times larger than the free solution diffusivity and adsorption capacity approaching 300 mg/cm3 of particle volume.
  • Keywords
    Mass transfer , Ion-exchange , protein adsorption , Dextran-grafted agarose
  • Journal title
    Journal of Chromatography A
  • Serial Year
    2008
  • Journal title
    Journal of Chromatography A
  • Record number

    1511379