Title of article
The Ramsey numbers for cycles versus wheels of odd order
Author/Authors
Chen، نويسنده , , Yaojun and Cheng، نويسنده , , T.C. Edwin and Miao، نويسنده , , Zhengke and Ng، نويسنده , , C.T.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
2
From page
1875
To page
1876
Abstract
For two given graphs G 1 and G 2 , the Ramsey number R ( G 1 , G 2 ) is the smallest integer n such that for any graph G of order n , either G contains G 1 or the complement of G contains G 2 . Let C n denote a cycle of order n and W m a wheel of order m + 1 . It is conjectured by Surahmat, E.T. Baskoro and I. Tomescu that R ( C n , W m ) = 2 n − 1 for even m ≥ 4 , n ≥ m and ( n , m ) ≠ ( 4 , 4 ) . In this paper, we confirm the conjecture for n ≥ 3 m / 2 + 1 .
Keywords
Ramsey number , cycle , wheel
Journal title
Applied Mathematics Letters
Serial Year
2009
Journal title
Applied Mathematics Letters
Record number
1526448
Link To Document