• Title of article

    Fractional relaxation equations on Banach spaces

  • Author/Authors

    Lizama، نويسنده , , Jose Carlos Mann Prado، نويسنده , , Humberto، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    6
  • From page
    137
  • To page
    142
  • Abstract
    We study existence and qualitative properties of solutions for the abstract fractional relaxation equation (0.1) u ′ ( t ) − A D t α u ( t ) + u ( t ) = f ( t ) , 0 < α < 1 , t ≥ 0 , u ( 0 ) = 0 , on a complex Banach space X , where A is a closed linear operator, D t α is the Caputo derivative of fractional order α ∈ ( 0 , 1 ) , and f is an X -valued function. We also study conditions under which the solution operator has the properties of maximal regularity and L p integrability. We characterize these properties in the Hilbert space case.
  • Keywords
    Derivatives of fractional order , Regularized resolvents , Fractional evolution equations
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2010
  • Journal title
    Applied Mathematics Letters
  • Record number

    1526536