• Title of article

    A covering problem over finite rings

  • Author/Authors

    Nakaoka، نويسنده , , I.N. and dos Santos، نويسنده , , O.J.N.T.N.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    5
  • From page
    322
  • To page
    326
  • Abstract
    Given a finite commutative ring with identity A , define c ( A , n , R ) as the minimum cardinality of a subset H of A n which satisfies the following property: every element in A n differs in at most R coordinates from a multiple of an element in H . In this work, we determine the numbers c ( Z m , n , 0 ) for all integers m ≥ 2 and n ≥ 1 . We also prove the relation c ( S × A , n , 1 ) ≤ c ( S , n − 1 , 0 ) c ( A , n , 1 ) , where S = F q or Z q and q is a prime power. As an application, an upper bound is obtained for c ( Z p m , n , 1 ) , where p is a prime.
  • Keywords
    finite rings , Covering problem , upper bounds
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2010
  • Journal title
    Applied Mathematics Letters
  • Record number

    1526662