Title of article
Recent advances in linear analysis of convergence for splittings for solving ODE problems
Author/Authors
Brugnano، نويسنده , , Luigi and Magherini، نويسنده , , Cecilia، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
16
From page
542
To page
557
Abstract
In the nineties, Van der Houwen et al. (see, e.g., [P.J. van der Houwen, B.P. Sommeijer, J.J. de Swart, Parallel predictor–corrector methods, J. Comput. Appl. Math. 66 (1996) 53–71; P.J. van der Houwen, J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, SIAM J. Sci. Comput. 18 (1997) 41–55; P.J. van der Houwen, J.J.B. de Swart, Parallel linear system solvers for Runge–Kutta methods, Adv. Comput. Math. 7 (1–2) (1997) 157–181]) introduced a linear analysis of convergence for studying the properties of the iterative solution of the discrete problems generated by implicit methods for ODEs. This linear convergence analysis is here recalled and completed, in order to provide a useful quantitative tool for the analysis of splittings for solving such discrete problems. Indeed, this tool, in its complete form, has been actively used when developing the computational codes BiM and BiMD [L. Brugnano, C. Magherini, The BiM code for the numerical solution of ODEs, J. Comput. Appl. Math. 164–165 (2004) 145–158. Code available at: http://www.math.unifi.it/~brugnano/BiM/index.html; L. Brugnano, C. Magherini, F. Mugnai, Blended implicit methods for the numerical solution of DAE problems, J. Comput. Appl. Math. 189 (2006) 34–50]. Moreover, the framework is extended for the case of special second order problems. Examples of application, aimed to compare different iterative procedures, are also presented.
Keywords
ordinary differential equations , Second order problems , Stiff problems , Implicit numerical methods , Iterative solution of algebraic systems , Blended implicit methods , Initial value problems
Journal title
Applied Numerical Mathematics
Serial Year
2009
Journal title
Applied Numerical Mathematics
Record number
1528981
Link To Document