Title of article
Extended Bressoud–Wei and Koike skew Schur function identities
Author/Authors
Hamel، نويسنده , , A.M. and King، نويسنده , , R.C.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
13
From page
545
To page
557
Abstract
The Jacobi–Trudi identity expresses a skew Schur function as a determinant of complete symmetric functions. Bressoud and Wei extend this idea, introducing an integer parameter t ⩾ − 1 and showing that signed sums of skew Schur functions of a certain shape are expressible once again as a determinant of complete symmetric functions. Koike provides a Jacobi–Trudi-style definition of universal rational characters of the general linear group and gives their expansion as a signed sum of products of Schur functions in two distinct sets of variables. Here we extend Bressoud and Weiʹs formula by including an additional parameter and extending the result to the case of all integer t. Then we introduce this parameter idea to the Koike formula, extending it in the same way. We prove our results algebraically using Laplace determinantal expansions.
Keywords
Schur functions , Weyl identities , Jacobi–Trudi identity
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2011
Journal title
Journal of Combinatorial Theory Series A
Record number
1531586
Link To Document