Title of article
Deformed Kazhdan–Lusztig elements and Macdonald polynomials
Author/Authors
de Gier، نويسنده , , Jan and Lascoux، نويسنده , , Alain and Sorrell، نويسنده , , Mark، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
29
From page
183
To page
211
Abstract
We introduce deformations of Kazhdan–Lusztig elements and specialised non-symmetric Macdonald polynomials, both of which form a distinguished basis of the polynomial representation of a maximal parabolic subalgebra of the Hecke algebra. We give explicit integral formula for these polynomials, and explicitly describe the transition matrices between classes of polynomials. We further develop a combinatorial interpretation of homogeneous evaluations using an expansion in terms of Schubert polynomials in the deformation parameters.
Keywords
Hecke algebra , Kazhdan Lusztig basis , Macdonald polynomials , plane partitions
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2012
Journal title
Journal of Combinatorial Theory Series A
Record number
1531729
Link To Document