Title of article
Singular symplectic flops and Ruan cohomology
Author/Authors
Chen، نويسنده , , Bohui and Li، نويسنده , , An-Min and Zhang، نويسنده , , Qi and Zhao، نويسنده , , Guosong، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
22
From page
1
To page
22
Abstract
In this paper, we study the symplectic geometry of singular conifolds of the finite group quotient W r = { ( x , y , z , t ) ∣ x y − z 2 r + t 2 = 0 } / μ r ( a , − a , 1 , 0 ) , r ≥ 1 , which we call orbi-conifolds. The related orbifold symplectic conifold transition and orbifold symplectic flops are constructed. Let X and Y be two symplectic orbifolds connected by such a flop. We study orbifold Gromov–Witten invariants of exceptional classes on X and Y and show that they have isomorphic Ruan cohomologies. Hence, we verify a conjecture of Ruan.
Keywords
Orbifold , FLOP , Ruan cohomology
Journal title
Topology
Serial Year
2009
Journal title
Topology
Record number
1545622
Link To Document