• Title of article

    Transformations of a Graph Increasing its Laplacian Polynomial and Number of Spanning Trees

  • Author/Authors

    Kelmans، نويسنده , , A.K.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    14
  • From page
    35
  • To page
    48
  • Abstract
    LetG rmndenote the set of simple graphs withnvertices andmedges,t(G)the number of spanning trees of a graphG,andL(λ, G)the Laplacian polynomial ofG.We give some operationsQon graphs such that ifG∈G rmnthenQ(G)∈G rmnandL(λ, G)≤L(λ, Q(G))forλ≤n.Because of the relationt(Ks\E(Gn)) =srs-n-2L(s, Gn) [5],these operations also increase the number of spanning trees of the corresponding complement graphs:t(Ks \ E(G)) ≤ t(Ks \ E(Q(G)).The approach developed can be used to find some other graph operations with the same property.
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    1997
  • Journal title
    European Journal of Combinatorics
  • Record number

    1545682