Title of article
A linear programming approach to the Manickam–Miklós–Singhi conjecture
Author/Authors
Hartke، نويسنده , , Stephen G. and Stolee، نويسنده , , Derrick، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
18
From page
53
To page
70
Abstract
The Manickam–Miklós–Singhi conjecture states that when n ≥ 4 k , every multiset of n real numbers with nonnegative total sum has at least ( n − 1 k − 1 ) k -subsets with nonnegative sum. We develop a branching strategy using a linear programming formulation to show that verifying the conjecture for fixed values of k is a finite problem. To improve our search, we develop a zero-error randomized propagation algorithm. Using implementations of these algorithms, we verify a stronger form of the conjecture for all k ≤ 7 .
Journal title
European Journal of Combinatorics
Serial Year
2014
Journal title
European Journal of Combinatorics
Record number
1546413
Link To Document