Title of article
Regularity of Invariant Measures: The Case of Non-constant Diffusion Part
Author/Authors
Bogachev، نويسنده , , V.I. and Krylov، نويسنده , , N. and Rِckner، نويسنده , , M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1996
Pages
20
From page
223
To page
242
Abstract
We prove regularity (i.e., smoothness) of measuresμon Rdsatisfying the equationL*μ=0 whereLis an operator of typeLu=tr(Au″)+B·∇u. HereAis a Lipschitz continuous, uniformly elliptic matrix-valued map andBis merelyμ-square integrable. We also treat a class of corresponding infinite dimensional cases where Rdis replaced by a locally convex topological vector spaceX. In this casesμis proved to be absolutely continuous w.r.t. a Gaussian measure onXand the square root of the Radon–Nikodym density belongs to the Malliavin test function space D2, 1.
Journal title
Journal of Functional Analysis
Serial Year
1996
Journal title
Journal of Functional Analysis
Record number
1547501
Link To Document