• Title of article

    A relativistic hypergeometric function

  • Author/Authors

    Ruijsenaars، نويسنده , , S.N.M.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    25
  • From page
    393
  • To page
    417
  • Abstract
    We survey our work on a function generalizing 2 F 1 . This function is a joint eigenfunction of four Askey–Wilson-type hyperbolic difference operators, reducing to the Askey–Wilson polynomials for certain discrete values of the variables. It is defined by a contour integral generalizing the Barnes representation of 2 F 1 . It has various symmetries, including a hidden D 4 symmetry in the parameters. By means of the associated Hilbert space transform, the difference operators can be promoted to self-adjoint operators, provided the parameters vary over a certain polytope in the parameter space Π . For a dense subset of Π , parameter shifts give rise to an explicit evaluation in terms of rational functions of exponentials (`hyperbolicʹ functions and plane waves).
  • Keywords
    Hilbert space transform , Parameter shifts , generalized hypergeometric function , Askey–Wilson difference operators , Askey–Wilson polynomials
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2005
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1552910