• Title of article

    Numerical computation of eigenvalues in spectral gaps of Sturm–Liouville operators

  • Author/Authors

    Aceto، نويسنده , , L. and Ghelardoni، نويسنده , , P. and Marletta، نويسنده , , M.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    18
  • From page
    453
  • To page
    470
  • Abstract
    We consider two different approaches for the numerical calculation of eigenvalues of a singular Sturm–Liouville problem - y ″ + Q ( x ) y = λ y , x ∈ R + , where the potential Q is a decaying L 1 perturbation of a periodic function and the essential spectrum consequently has a band-gap structure. Both the approaches which we propose are spectrally exact: they are capable of generating approximations to eigenvalues in any gap of the essential spectrum, and do not generate any spurious eigenvalues. o prove (Theorem 2.4) that even the most careless of regularizations of the problem can generate at most one spurious eigenvalue in each spectral gap, a result which does not seem to have been known hitherto.
  • Keywords
    Sturm–Liouville operator , Eigenvalue Problem
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2006
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1553232