Title of article
Stationary biparametric ADI preconditioners for conjugate gradient methods
Author/Authors
Hadjidimos، نويسنده , , A. and Lapidakis، نويسنده , , M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
18
From page
364
To page
381
Abstract
In the present article we determine optimal stationary biparametric ADI preconditioners for the conjugate gradient methods when applied for the solution of a model problem second order elliptic PDE. The PDE is approximated by 5- and 9-point stencils. As was proved in Hadjidimos and M. Lapidakis [Optimal alternating direction implicit preconditioners for conjugate gradient methods, 〈 http://www.math.uoc.gr/ ∼ hadjidim/hadlap05.ps 〉 ] the problem of determining the best ADI preconditioner is equivalent to that of determining the optimal extrapolated (E) ADI method. So, analytic expressions are found for the optimal acceleration and extrapolation parameters for both discretizations where those for the 9-point stencil ones are new. Finally, numerical examples run using other well-known preconditioners show that the ADI ones we propose are very competitive.
Keywords
(Extrapolated) Alternating direction implicit methods , Spectral condition number , Preconditioners , Extrapolation parameter , conjugate gradient methods , Acceleration parameters
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2007
Journal title
Journal of Computational and Applied Mathematics
Record number
1553885
Link To Document