Title of article
Gauss–Legendre quadrature for the evaluation of integrals involving the Hankel function
Author/Authors
Elliott، نويسنده , , David and Johnston، نويسنده , , Peter R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
13
From page
23
To page
35
Abstract
The boundary integral method for the two dimensional Helmholtz equation requires the approximate evaluation of the integral ∫ - 1 1 g ( x ) H 0 ( 1 ) ( λ ( x - a ) 2 + b 2 ) d x , where g is a polynomial. In particular, Gauss–Legendre quadrature is considered when the source point is close to the interval of integration; that is - 1 ⩽ a ⩽ 1 and 0 < b ⪡ 1 so that the integral is nearly weakly singular. It is shown that the real and imaginary parts of the integral must be considered separately. The sinh transformation can be used to improve the truncation error of the imaginary part, but must not be used for the real part. An asymptotic error analysis is given.
Keywords
Nearly singular integrals , Nonlinear coordinate transformation , Sinh function , Numerical Integration , Hankel function , boundary element method , Helmholtz’ equation
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2008
Journal title
Journal of Computational and Applied Mathematics
Record number
1554144
Link To Document