• Title of article

    Gauss–Legendre quadrature for the evaluation of integrals involving the Hankel function

  • Author/Authors

    Elliott، نويسنده , , David and Johnston، نويسنده , , Peter R.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    13
  • From page
    23
  • To page
    35
  • Abstract
    The boundary integral method for the two dimensional Helmholtz equation requires the approximate evaluation of the integral ∫ - 1 1 g ( x ) H 0 ( 1 ) ( λ ( x - a ) 2 + b 2 ) d x , where g is a polynomial. In particular, Gauss–Legendre quadrature is considered when the source point is close to the interval of integration; that is - 1 ⩽ a ⩽ 1 and 0 < b ⪡ 1 so that the integral is nearly weakly singular. It is shown that the real and imaginary parts of the integral must be considered separately. The sinh transformation can be used to improve the truncation error of the imaginary part, but must not be used for the real part. An asymptotic error analysis is given.
  • Keywords
    Nearly singular integrals , Nonlinear coordinate transformation , Sinh function , Numerical Integration , Hankel function , boundary element method , Helmholtz’ equation
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2008
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1554144