Title of article
The preconditioned Gauss–Seidel method faster than the SOR method
Author/Authors
Niki، نويسنده , , Hiroshi and Kohno، نويسنده , , Toshiyuki and Morimoto، نويسنده , , Munenori، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
13
From page
59
To page
71
Abstract
In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154–156 (1991) 123–143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss–Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113–123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner ( I + S max ) , J. Comput. Appl. Math. 145 (2002) 373–378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z -matrices, J. Comput. Appl. Math. 75 (1996) 87–97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119–125 [10]]. Since these preconditioners are constructed from the elements of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the n th row of matrix A. In the present paper, in order to deal with this drawback, we propose a new preconditioner. In addition, the convergence and comparison theorems of the proposed method are established. Simple numerical examples are also given, and we show that the convergence rate of the proposed method is better than that of the optimum SOR.
Keywords
Gauss–Seidel method , splitting , M -matrix , SOR method , Preconditioning
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2008
Journal title
Journal of Computational and Applied Mathematics
Record number
1554492
Link To Document