• Title of article

    A Generalized φ-Divergence for Asymptotically Multivariate Normal Models

  • Author/Authors

    Wegenkittl، نويسنده , , Stefan، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2002
  • Pages
    15
  • From page
    288
  • To page
    302
  • Abstract
    I. Csiszárʹs (Magyar. Tud. Akad. Mat. Kutató Int. Közl8 (1963), 85–108) ϕ-divergence, which was considered independently by M. S. Ali and S. D. Silvey (J. R. Statist. Soc. Ser. B28 (1966), 131–142) gives a goodness-of-fit statistic for multinomial distributed data. We define a generalized φ-divergence that unifies the ϕ-divergence approach with that of C. R. Rao and S. K. Mitra (“Generalized Inverse of Matrices and Its Applications,” Wiley, New York, 1971) and derive weak convergence to a χ2 distribution under the assumption of asymptotically multivariate normal distributed data vectors. As an example we discuss the application to the frequency count in Markov chains and thereby give a goodness-of-fit test for observations from dependent processes with finite memory.
  • Keywords
    distribution of statistics , Hypothesis testing , asymptotic distribution theory , Markov processes: hypothesis testing (Inference from stochastic processes)
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2002
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1557827