• Title of article

    Invariant Bayesian inference in regression models that is robust against the Jeffreys–Lindleyʹs paradox

  • Author/Authors

    Frank Kleibergen، نويسنده , , Frank، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2004
  • Pages
    32
  • From page
    227
  • To page
    258
  • Abstract
    We obtain the prior and posterior probability of a nested regression model as the Hausdorff-integral of the prior and posterior on the parameters of an encompassing linear regression model over a lower-dimensional set that represents the nested model. The Hausdorff-integral is invariant and therefore avoids the Borel–Kolmogorov paradox. Basing priors and prior probabilities of nested regression models on the prior on the parameters of an encompassing linear regression model reduces the discrepancies between classical and Bayesian inference, like, the Jeffreys–Lindleyʹs paradox. We illustrate the analysis with examples of linear restrictions, i.e. a linear regression model, and non-linear restrictions, i.e. a cointegration and an autoregressive moving average model, on the parameters of an encompassing linear regression model.
  • Keywords
    Cointegration , ARMA , Conditional densities , Prior and posterior (odds ratios) , Borel–Kolmogorov paradox
  • Journal title
    Journal of Econometrics
  • Serial Year
    2004
  • Journal title
    Journal of Econometrics
  • Record number

    1558634