• Title of article

    A bivariate Lévy process with negative binomial and gamma marginals

  • Author/Authors

    Kozubowski، نويسنده , , Tomasz J. and Panorska، نويسنده , , Anna K. and Podgَrski، نويسنده , , Krzysztof، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2008
  • Pages
    20
  • From page
    1418
  • To page
    1437
  • Abstract
    The joint distribution of X and N , where N has a geometric distribution and X is the sum of N IID exponential variables (independent of N ), is infinitely divisible. This leads to a bivariate Lévy process { ( X ( t ) , N ( t ) ) , t ≥ 0 } , whose coordinates are correlated negative binomial and gamma processes. We derive basic properties of this process, including its covariance structure, representations, and stochastic self-similarity. We examine the joint distribution of ( X ( t ) , N ( t ) ) at a fixed time t , along with the marginal and conditional distributions, joint integral transforms, moments, infinite divisibility, and stability with respect to random summation. We also discuss maximum likelihood estimation and simulation for this model.
  • Keywords
    Discrete Lévy process , 62H12 , Gamma process , Maximum likelihood estimation , Negative binomial process , Operational time , Random summation , 60E05 , Random time transformation , 60E07 , stability , 60F05 , Subordination , 60G18 , self-similarity , 60G50 , 60G51 , 62H05 , Infinite divisibility , Gamma Poisson process
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2008
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1558947