• Title of article

    Analysis of high dimensional multivariate stochastic volatility models

  • Author/Authors

    Chib، نويسنده , , Siddhartha and Nardari، نويسنده , , Federico and Shephard، نويسنده , , Neil، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2006
  • Pages
    31
  • From page
    341
  • To page
    371
  • Abstract
    This paper is concerned with the Bayesian estimation and comparison of flexible, high dimensional multivariate time series models with time varying correlations. The model proposed and considered here combines features of the classical factor model with that of the heavy tailed univariate stochastic volatility model. A unified analysis of the model, and its special cases, is developed that encompasses estimation, filtering and model choice. The centerpieces of the estimation algorithm (which relies on MCMC methods) are: (1) a reduced blocking scheme for sampling the free elements of the loading matrix and the factors and (2) a special method for sampling the parameters of the univariate SV process. The resulting algorithm is scalable in terms of series and factors and simulation-efficient. Methods for estimating the log-likelihood function and the filtered values of the time-varying volatilities and correlations are also provided. The performance and effectiveness of the inferential methods are extensively tested using simulated data where models up to 50 dimensions and 688 parameters are fit and studied. The performance of our model, in relation to various multivariate GARCH models, is also evaluated using a real data set of weekly returns on a set of 10 international stock indices. We consider the performance along two dimensions: the ability to correctly estimate the conditional covariance matrix of future returns and the unconditional and conditional coverage of the 5% and 1% value-at-risk (VaR) measures of four pre-defined portfolios.
  • Keywords
    Forecasting , Time-varying correlati , Markov chain Monte Carlo , Metropolis-Hastings algorithm , particle filter , State space model , Stochastic jumps , Student-t distribution , Volatility , Value-at-Risk , Risk Measurement , SIMULATION , Bayesian inference , marginal likelihood
  • Journal title
    Journal of Econometrics
  • Serial Year
    2006
  • Journal title
    Journal of Econometrics
  • Record number

    1559029