Title of article
The Hermite–Hadamard inequality for convex functions on a global NPC space
Author/Authors
Niculescu، نويسنده , , Constantin P.، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2009
Pages
7
From page
295
To page
301
Abstract
We prove an extension of Choquetʹs theorem to the framework of compact metric spaces with a global nonpositive curvature. Together with Sturmʹs extension [K.T. Sturm, Probability measures on metric spaces of nonpositive curvature, in: Pascal Auscher, et al. (Eds.), Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs April 16–July 13, 2002, Paris, France, in: Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 357–390] of Jensenʹs inequality, this provides a full analogue of the Hermite–Hadamard inequality for the convex functions defined on such spaces.
Keywords
Global NPC space , Convex function , Extreme point
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2009
Journal title
Journal of Mathematical Analysis and Applications
Record number
1560317
Link To Document