• Title of article

    The Hermite–Hadamard inequality for convex functions on a global NPC space

  • Author/Authors

    Niculescu، نويسنده , , Constantin P.، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2009
  • Pages
    7
  • From page
    295
  • To page
    301
  • Abstract
    We prove an extension of Choquetʹs theorem to the framework of compact metric spaces with a global nonpositive curvature. Together with Sturmʹs extension [K.T. Sturm, Probability measures on metric spaces of nonpositive curvature, in: Pascal Auscher, et al. (Eds.), Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs April 16–July 13, 2002, Paris, France, in: Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 357–390] of Jensenʹs inequality, this provides a full analogue of the Hermite–Hadamard inequality for the convex functions defined on such spaces.
  • Keywords
    Global NPC space , Convex function , Extreme point
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2009
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1560317