• Title of article

    The numerical range of a tridiagonal operator

  • Author/Authors

    Chien، نويسنده , , Mao-Ting and Nakazato، نويسنده , , Hiroshi، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2011
  • Pages
    8
  • From page
    297
  • To page
    304
  • Abstract
    Let r be a real number and A a tridiagonal operator defined by A e j = e j − 1 + r j e j + 1 , j = 1 , 2 , … , where { e 1 , e 2 , … } is the standard orthonormal basis for ℓ 2 ( N ) . Such tridiagonal operators arise in Rogers–Ramanujan identities. In this paper, we study the numerical ranges of these tridiagonal operators and finite-dimensional tridiagonal matrices. In particular, when r = − 1 , the numerical range of the finite-dimensional tridiagonal matrix is the convex hull of two explicit ellipses. Applying the result, we obtain that the numerical range of the tridiagonal operator is the square { z ∈ C : − 1 ⩽ R ( z ) ⩽ 1 , − 1 ⩽ ℑ ( z ) ⩽ 1 } \ { 1 + i , 1 − i , − 1 + i , − 1 − i } .
  • Keywords
    Tridiagonal operator , Numerical range , Rogers–Ramanujan identities
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2011
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1561390