• Title of article

    Generalizations of weakly peripherally multiplicative maps between uniform algebras

  • Author/Authors

    Lee، نويسنده , , Kristopher and Luttman، نويسنده , , Aaron، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2011
  • Pages
    10
  • From page
    108
  • To page
    117
  • Abstract
    Let A and B be uniform algebras on first-countable, compact Hausdorff spaces X and Y, respectively. For f ∈ A , the peripheral spectrum of f, denoted by σ π ( f ) = { λ ∈ σ ( f ) : | λ | = ‖ f ‖ } , is the set of spectral values of maximum modulus. A map T : A → B is weakly peripherally multiplicative if σ π ( T ( f ) T ( g ) ) ∩ σ π ( f g ) ≠ ∅ for all f , g ∈ A . We show that if T is a surjective, weakly peripherally multiplicative map, then T is a weighted composition operator, extending earlier results. Furthermore, if T 1 , T 2 : A → B are surjective mappings that satisfy σ π ( T 1 ( f ) T 2 ( g ) ) ∩ σ π ( f g ) ≠ ∅ for all f , g ∈ A , then T 1 ( f ) T 2 ( 1 ) = T 1 ( 1 ) T 2 ( f ) for all f ∈ A , and the map f ↦ T 1 ( f ) T 2 ( 1 ) is an isometric algebra isomorphism.
  • Keywords
    Spectral preserver problems , Weak peripheral multiplicativity , Uniform algebra , Algebra isomorphism
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2011
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1561499