• Title of article

    Regularity of solutions to degenerate -Laplacian equations

  • Author/Authors

    Cruz-Uribe، نويسنده , , David H. Moen، نويسنده , , Kabe and Naibo، نويسنده , , Virginia، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2013
  • Pages
    21
  • From page
    458
  • To page
    478
  • Abstract
    We prove regularity results for solutions of the equation div ( 〈 A X u , X u 〉 p − 2 2 A X u ) = 0 , 1 < p < ∞ , where X = ( X 1 , … , X m ) is a family of vector fields satisfying Hörmander’s condition, and A is an m × m symmetric matrix that satisfies degenerate ellipticity conditions. If the degeneracy is of the form λ w ( x ) 2 / p | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ Λ w ( x ) 2 / p | ξ | 2 , w ∈ A p , then we show that solutions are locally Hölder continuous. If the degeneracy is of the form k ( x ) − 2 p ′ | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ k ( x ) 2 p | ξ | 2 , k ∈ A p ′ ∩ R H τ , where τ depends on the homogeneous dimension, then the solutions are continuous almost everywhere, and we give examples to show that this is the best result possible. We give an application to maps of finite distortion.
  • Keywords
    p -Laplacian , Hِrmander vector fields , A p weights
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2013
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1563455