Title of article
Regularity of solutions to degenerate -Laplacian equations
Author/Authors
Cruz-Uribe، نويسنده , , David H. Moen، نويسنده , , Kabe and Naibo، نويسنده , , Virginia، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2013
Pages
21
From page
458
To page
478
Abstract
We prove regularity results for solutions of the equation div ( 〈 A X u , X u 〉 p − 2 2 A X u ) = 0 , 1 < p < ∞ , where X = ( X 1 , … , X m ) is a family of vector fields satisfying Hörmander’s condition, and A is an m × m symmetric matrix that satisfies degenerate ellipticity conditions. If the degeneracy is of the form λ w ( x ) 2 / p | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ Λ w ( x ) 2 / p | ξ | 2 , w ∈ A p , then we show that solutions are locally Hölder continuous. If the degeneracy is of the form k ( x ) − 2 p ′ | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ k ( x ) 2 p | ξ | 2 , k ∈ A p ′ ∩ R H τ , where τ depends on the homogeneous dimension, then the solutions are continuous almost everywhere, and we give examples to show that this is the best result possible. We give an application to maps of finite distortion.
Keywords
p -Laplacian , Hِrmander vector fields , A p weights
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2013
Journal title
Journal of Mathematical Analysis and Applications
Record number
1563455
Link To Document