• Title of article

    An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index

  • Author/Authors

    Dierckx، نويسنده , , Goedele and Goegebeur، نويسنده , , Yuri and Guillou، نويسنده , , Armelle، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2013
  • Pages
    17
  • From page
    70
  • To page
    86
  • Abstract
    We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency and asymptotic normality of the estimator is established under a second order condition on the distribution underlying the data, and for intermediate sequences of upper order statistics. The finite sample properties of the proposed estimator and some alternatives from the extreme value literature are evaluated by a small simulation experiment involving both uncontaminated and contaminated samples.
  • Keywords
    Pareto-type distribution , Tail index , Bias-correction , Density power divergence
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2013
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1566405