• Title of article

    Statistical cloud detection from SEVIRI multispectral images

  • Author/Authors

    Amato، نويسنده , , U. and Antoniadis، نويسنده , , A. and Cuomo، نويسنده , , V. and Cutillo، نويسنده , , L. and Franzese، نويسنده , , M. and Murino، نويسنده , , L. and Serio، نويسنده , , C.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    17
  • From page
    750
  • To page
    766
  • Abstract
    Cloud detection from geostationary satellite multispectral images through statistical methodologies is investigated. Discriminant analysis methods are considered to this purpose, endowed with a nonparametric density estimation and a linear transform into principal and independent components. The whole methodology is applied to the MSG-SEVIRI sensor through a set of test images covering the central and southern part of Europe. “Truth” data for the learning phase of discriminant analysis are taken from the cloud mask product MOD35 in correspondence of passages of MODIS close to the SEVIRI images. Performance of the discriminant analysis methods is estimated over sea/land, daytime/nighttime both when training and test datasets coincide and when they are different. Discriminant analysis shows very good performance in detecting clouds, especially over land. PCA and ICA are effective in improving detection.
  • Keywords
    multispectral , Classification , SEVIRI , Geostationary , MSG , Discriminant analysis , clouds
  • Journal title
    Remote Sensing of Environment
  • Serial Year
    2008
  • Journal title
    Remote Sensing of Environment
  • Record number

    1575318