• Title of article

    Frequently visited sets for random walks

  • Author/Authors

    Csلki، نويسنده , , Endre and Fِldes، نويسنده , , Antَnia and Révész، نويسنده , , Pلl and Rosen، نويسنده , , Jay and Shi، نويسنده , , Zhan، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    15
  • From page
    1503
  • To page
    1517
  • Abstract
    We study the occupation measure of various sets for a symmetric transient random walk in Z d with finite variances. Let μ n X ( A ) denote the occupation time of the set A up to time n. It is shown that sup x ∈ Z d μ n X ( x + A ) / log n tends to a finite limit as n → ∞ . The limit is expressed in terms of the largest eigenvalue of a matrix involving the Green function of X restricted to the set A. Some examples are discussed and the connection to similar results for Brownian motion is given.
  • Keywords
    Strong theorems , Occupation measure , random walk
  • Journal title
    Stochastic Processes and their Applications
  • Serial Year
    2005
  • Journal title
    Stochastic Processes and their Applications
  • Record number

    1577680