• Title of article

    On the computation of the hull number of a graph

  • Author/Authors

    Dourado، نويسنده , , Mitre C. and Gimbel، نويسنده , , John G. and Kratochvيl، نويسنده , , Jan and Protti، نويسنده , , Fلbio and Szwarcfiter، نويسنده , , Jayme L.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    7
  • From page
    5668
  • To page
    5674
  • Abstract
    Let G be a graph. If u , v ∈ V ( G ) , a u – v shortest path of G is a path linking u and v with minimum number of edges. The closed interval  I [ u , v ] consists of all vertices lying in some u – v shortest path of G . For S ⊆ V ( G ) , the set I [ S ] is the union of all sets I [ u , v ] for u , v ∈ S . We say that S is a convex set if I [ S ] = S . The convex hull of S , denoted I h [ S ] , is the smallest convex set containing S . A set S is a hull set of G if I h [ S ] = V ( G ) . The cardinality of a minimum hull set of G is the hull number of G , denoted by h n ( G ) . In this work we prove that deciding whether h n ( G ) ≤ k is NP-complete.We also present polynomial-time algorithms for computing h n ( G ) when G is a unit interval graph, a cograph or a split graph.
  • Keywords
    hull number , Complexity , convexity , Algorithms , unit interval graphs , Cographs , Geodesics
  • Journal title
    Discrete Mathematics
  • Serial Year
    2009
  • Journal title
    Discrete Mathematics
  • Record number

    1599103